
Paper AD11 
 

A Pinch of SAS, a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe 
 

Jonah P. Turner, United States Bureau of the Census, Washington, D.C. 
 
ABSTRACT 
 

Proper ingredients, precise measurements, and 
personal attention all contribute significantly to the 
creation of a perfect meal – the same can be said 
about implementing an effective software 
application.  By knowing some fundamental SAS, 
HTML, and JavaScript elements and applying the 
right touch of each medium, one can easily develop 
practical and insightful programs for managing 
business systems.  More specifically, by making 
use of these three languages, one can design 
valuable web-based solutions that exploit a number 
of technologies the Internet has to offer. 
 

This paper will explain how basic components of 
SAS, HTML, and JavaScript can be fused together 
for implementing rather useful applications that 
function via the Internet.  A background discussion 
on the SAS/IntrNet software will shed light on the 
advantages of integrating Internet technologies for 
realizing business solutions.  Subsequently, a case 
study will focus on how these concepts were 
recently drawn together in a particular application 
deployed by the Data Processing Team of the 
Continuous Measurement Office at the United 
States Census Bureau.  Finally, some information 
will be provided to offer insight on other 
programming tools that could be used together with 
SAS to create more extensive and comprehensive 
web-based applications, such as JavaServer Pages 
(JSP) and Servlets. 
 
INTRODUCTION 
 

There are a number of people who have only a 
basic understanding of SAS: those who have just 
begun learning the language and those who merely 
apply common PROC and DATA step functions to 
their everyday programming assignments.  For 
those individuals, the thought of crafting useful 
software applications may not seem plausible. 
However, with the innovative, yet straightforward 
tools now available through SAS, the prospect of 
implementing purposeful applications becomes 
more promising. In particular, SAS/IntrNet 
software allows programmers with even the most 
basic SAS abilities to serve up colorful reports, 
queries, and graphs straight to their clients’ web 
browser without bearing much complexity. 
 

It is important to recognize how each programming 
language contributes to the formation of these 

Internet applications.  Fittingly, SAS would be used 
as the underlying tool for manipulating data and 
generating the desired output for clients to observe.  
HTML and JavaScript would be utilized for 
creating the web forms used for passing parameters 
to the SAS programs, as well as for rendering the 
output to appear more rich and comprehensible to 
the user.  Collectively, just a basic understanding of 
these three languages could open doors for all 
programmers hoping to provide their clients with a 
more practical system for viewing data. 
 

This paper serves as an informative roadmap with 
the purpose of directing the reader to the range of 
tools available for deriving Internet applications 
from SAS programs.  This paper is intended for 
users with a basic understanding of SAS techniques 
and a general knowledge of HTML.  JavaScript is 
not required for designing web-based applications; 
rather, knowledge of this programming language 
can aid in the enhancement and enrichment of the 
webpages already created.  Nevertheless, those 
individuals with advanced SAS abilities could 
benefit from this paper if they have not yet dealt 
directly with web development and the evolving 
link between SAS and the Internet. 
 
BACKGROUND 
 

• HTML 
 

Webpages are written in a basic scripting language: 
HTML, or HyperText Markup Language.  
Essentially, HTML is a means of specifying layout 
information within documents.  It is important to 
mention that HTML is not a programming 
language; rather, the markup grammar dictates the 
contents of an HTML file with no connection to 
instruction processing.  In effect, a web browser 
renders an HTML document by seeking out 
distinctive HTML syntax used for altering the 
layout of the file, inserting images, and establishing 
links to other pages.   
 

There are 3 fundamental components to HTML: 
elements, tags, and attributes. The HTML 
directives, together with the text to which they 
apply, are called elements.  A tag conveys the 
structure of the element to which it refers to rather 
than its appearance.  Tags are denoted by enclosing 
< and > characters, and typically nest the elements.  
Start tags, those placed at the beginning of an 
element, may have attributes to define various 
characteristics of the contained elements, such as 



 2

text alignment, format, or size.  The following 
HTML code demonstrates all three of these 
components together:  
 

<H2 ALIGN="center"><I>An HTML Heading</I></H2> 
 

The whole entity is an H2, or Heading, element, 
uses the start <H2> and <I> and closing </H2> 
and </I> tags, and utilizes the ALIGN=”center” 
attribute.  When rendered through a web browser, 
this statement would result in a large, italicized 
heading centered possibly at the top of a webpage, 
or perhaps above a subsection of text. 
 

↓ 
 

 
 
 

• JavaScript 
 

JavaScript, a client-side scripting language 
executed by the user’s Internet browser, can 
conveniently be imbedded into HTML documents.  
Those designing webpages can benefit greatly from 
JavaScript because it can be exploited like a 
genuine object-based programming language.  
Given that JavaScript can be programmed to 
execute during or react to specific events, it is 
possible to dynamically change the content of an 
HTML element.  Thus, JavaScript can be used to 
create responses to mouse clicks and keypress 
events, as well as being applicable for other 
practical functions, such as validating user entries 
before submitting a form to the web server.  This 
can therefore help to reduce the overhead of server-
side processing.  The following scriptlet, inserted 
into HTML code, redirects the web browser to the 
U.S. Census Bureau’s homepage when the user 
clicks on the “Visit Census Site” button: 
 
 <HTML> 
  <HEAD> 
   <SCRIPT LANGUAGE="JavaScript">  
    function  goToURL() {  
     window.location = "http://www.census.gov";  
    } 
   </SCRIPT> 
  </HEAD> 
 
  <BODY> 
   <FORM> 
    <INPUT TYPE=button VALUE="Visit Census Site" 
    onClick="goToURL()"> 
   </FORM> 
  </BODY> 
 </HTML> 
 

↓ 
 

 
 

• SAS – ODS 
 

The Output Delivery System, known as ODS, is a 
means for transforming SAS output into a variety 
of formats available to users, such as PDF, RTF, 
and HTML.  By using the ODS HTML statement, 
one can create and store static HTML documents 
by denoting the destination path in the statement 
declaration:  
 

ODS HTML HTML-file-specification(s) <option(s)>; 
 

The HTML document generated is comprised of all 
the necessary HTML tags and attributes for it to be 
properly displayed within an Internet browser.  
These documents can be edited and later stored on a 
production web server so that users may view and 
evaluate these pages over the Internet.   
 

What’s more significant is the ability to generate 
dynamic HTML content, which is where 
SAS/IntrNet software comes into play.  Under the 
dynamic approach, a user request is sent from a 
web browser to a web server, which handles this 
request by invoking a SAS session. After 
processing the request, the program’s results are 
routed directly back to the web browser as HTML 
content, namely, a webpage.  By creating webpages 
with this approach, Internet users retain control 
over what parameters are to be applied to the SAS 
program.  Additionally, since these requests are all 
broadcasted via the web browser, users can send 
out requests merely by filling out uncomplicated 
web forms; thus, avoiding the need to write custom 
SAS code for programming each individual request. 
 

• SAS/IntrNet 
 

SAS/IntrNet is a valuable software tool used for 
processing dynamic SAS applications via the 
Internet. In particular, SAS/IntrNet enables 
communication between a web browser running on 
a local computer and a SAS session operating on a 
remote machine, namely, a web server. 
 

The component most essential to the 
implementation of SAS/IntrNet is that of the 
application dispatcher.  The application dispatcher, 
a program that runs on the same server where SAS 
and SAS/IntrNet are installed, governs the process 
of recognizing and responding to user requests 
relayed though an Internet browser.  This process is 
quite straightforward and very effective in practice.  
To begin with, a user simply completes an HTML 
form using a web browser, such as Internet 
Explorer or Netscape Navigator.  The entries 
recorded among the form’s fields will soon 
thereafter be used as parameters to an existing SAS 
program.  The content of the form’s fields can 
depend on the complexity of the underlying SAS 



 3

program, or simply on how much control the 
programmer wants to grant the user. The 
information obtained though the user input is then 
delivered to the web server, which in turn launches 
the application broker.  The broker subsequently 
uses this information to determine which server 
should manage the request.  At this time, the 
application broker passes the data to the 
SAS/IntrNet application server, another important 
piece to the dispatcher.  Next, the application server 
invokes a SAS program, which ultimately processes 
the original information.  The results are finally 
sent through the application broker and output back 
to the user’s browser as an HTML document – a 
webpage – for normal web viewing. 
 

The application dispatcher is significant in that it 
provides the functionality of SAS to Internet users 
without accruing the overhead of installing SAS 
software on each client’s computer.  Accordingly, a 
user simply needs a web browser to interact with 
and process SAS data; thus, users are not required 
to possess any SAS programming skills to be able 
to fashion colorful and constructive reports.  In 
short, establishing a controlled and easily accessible 
system for managing data can readily be 
accomplished with this approach. 
 
IMPLEMENTATION 
 

• Problem 
 

The Data Processing Team of the Continuous 
Measurement Office at the U.S. Census Bureau is 
responsible for processing the American 
Community Survey, or ACS.  Traditionally, this 
group produces a variety of reports for subject-
matter specialists to use when reviewing the edited 
ACS data.  By and large, these specialists have 
been accustomed to sorting through extensive 
reports and substantial documentation in order to 
analyze data pertinent to their variables of interest.   
 

A particular working example involves the analysts 
having to examine records relating to hot-decking 
matrix counts by state.  However, there are so many 
records to consider, many of which are redundant 
or irrelevant, that viewing only the records that 
exist above a certain threshold would suffice. 
 

• Solution 
 

Implementing individual SAS programs to narrow 
down the sought-after data is an obvious solution; 
however, many of the analysts do not have enough, 
if any, SAS programming skills to achieve this.  
Furthermore, some analysts have too many requests 
– varying thresholds evaluated among different 
states – that any strategy for continually writing or 
modifying SAS code doesn’t seem viable.  

Therefore, for this instance and others alike, the 
employment of SAS/IntrNet software, along with 
common SAS and web development techniques, 
emerges as a logical and effective approach. 
 

HTML 
 

HTML can easily be applied to create Internet 
accessible forms, allowing users to select from a 
range of fields and/or enter in their own preferred 
values.  After the user submits the form, the values 
are passed as parameters to an existing SAS 
program via the application dispatcher.  This 
program is then executed on a remote server, which 
ultimately returns the results of the SAS code to the 
user’s web browser as an HTML document. 
 

The <FORM> tag, along with some key attributes, 
is used for designing a form for maintaining the 
variables to be passed, as follows: 
 

 <HTML> 
  <HEAD><TITLE>Form Example</TITLE></HEAD> 
   <BODY> 

<H1 ALIGN="center"><I><FONT COLOR="#000000"> 
Matrix Counts Analysis</FONT></I></H1><HR><BR> 

 
<FORM NAME=check METHOD=get ACTION="/../sas/ 
scripts/broker.exe"> 

     
     <FONT FACE="Comic Sans MS" SIZE="3"> 
     <B>1.) Select a State: </B></FONT> 
     <SELECT NAME=state>       
      <OPTION VALUE="01">Alabama 
      <OPTION VALUE="02">Alaska 
      <insert more options here> 
      <OPTION VALUE="56">Wyoming 
     </SELECT><BR><BR> 
 
     <FONT FACE="Comic Sans MS" SIZE="3"> 
     <B>2.) Enter a Threshold </B></FONT> 

 <INPUT VALUE="0.5" SIZE="4" MAXLENGTH="4" 
 NAME=thresh><BR><BR> 

 
     <FONT FACE="Comic Sans MS" SIZE="3"> 
     <B>3.) Submit Query: </B></FONT> 
     <INPUT TYPE=submit VALUE="Submit"> 
     <INPUT TYPE=hidden NAME=_program  
     VALUE="prgs.matrixcounts.sas"> 
     <INPUT TYPE=hidden NAME=_service VALUE="dp"> 
     <INPUT TYPE=hidden NAME=_debug VALUE="2"> 
    </FORM> 
 
   </BODY> 
 </HTML> 
 

The Method= attribute used within the <FORM> 
tag defines the mode for passing the parameters, 
either get or post.  The Action= attribute specifies 
the location of the application dispatcher program 
to be invoked somewhere on the web server.  In 
general, the Name= attribute designates a unique 
variable name for a particular HTML element.  A 
selection box and a textbox were utilized in this 
form, granting the user the ability to choose a 
particular state and enter a specific threshold.  
Other types of HTML data entry fields, such as 
textareas, multiple selection boxes, checkboxes, 
and radio buttons are also available. After making 
these selections, the user can submit the form using 



 4

the corresponding button.  Following submission, 
the application dispatcher launches the methodical 
process discussed in the SAS/IntrNet section above.  
In this particular case, there are 5 parameters 
delivered through the application dispatcher: 2 
user-defined parameters and 3 hidden parameters 
defined by the programmer.  The two parameters 
specified by the user are the chosen state code, 
state, and the threshold value entered, thresh.  
These will subsequently be used as macro variables 
in the SAS program, and referred to as &state and 
&thresh.  The other three parameters, hard-coded 
into the HTML form, are central to the dispatcher 
process.  The _program parameter determines the 
SAS program to be executed – in this instance, 
matrixcounts.sas.  This program is located in the 
directory associated with the fileref prgs, which 
was defined on the SAS server beforehand.  The 
parameter _service indicates the specific service 
assigned with the application dispatcher; generally, 
the value default can be used, but in this case, dp is 
employed since it has been prepared specifically by 
the system administrators.  The final parameter, 
_debug, denotes the debugging mode exercised 
during the testing phase.  For the most part, the 
SAS log is output to the web browser for error-
checking and evaluation.  
 

↓ 
 

 
 
 

JavaScript 
 

With the aid of JavaScript, webpages can be 
programmed to respond to various user events.  In 
this particular case, JavaScript can be used to 
validate the user threshold entry prior to submitting 
the form to the web server.  This can help reduce 
the overhead of server-side processing.  To grasp 
this, consider the case where the user enters too 
small a threshold: in this situation, too many 
observations would be encountered in the data set, 
leading to a great deal of processing inside the SAS 
session.  Consequently, the system may timeout due 
to a large execution time, or the browser may crash 
due to an overabundance of output.  Also, bear in 
mind the case where the user enters an invalid 
numeric value.  In this occurrence, the SAS 
program wouldn’t compile, yielding abnormal 
output, or possibly nothing at all.  Hence, invoking 

a simple scriptlet to verify the threshold entry 
before the form submission would not only prevent 
unwarranted server-side processing, but would also 
circumvent the transmission of inadequate data. 
 
 <HTML> 
  <HEAD><TITLE>Form Example</TITLE> 
   <SCRIPT LANGUAGE="JavaScript1.2"> 
    function checkNum() { 
     var x=document.check.thresh.value 
     var anum=/^-?[0-9]*(\.[0-9]+)?$/ 
     If (x=="" || anum.test(x)==false || x<0.5 || x>2.0) {  

alert("Please enter a valid threshold between 0.5 
and 2.0, or use the default value of 0.5.") 

      document.check.thresh.value = "0.5"  
     }  
    }  
   </SCRIPT> 
  </HEAD> 
  <BODY> 

<H1 ALIGN="center"><FONT COLOR="#000000"> 
Matrix Counts Analysis</FONT></H1><HR><BR> 

 
<FORM NAME=check METHOD=get ACTION="/../sas/ 
scripts/broker.exe" onSubmit="return false"> 

 
     <FONT FACE="Comic Sans MS" SIZE="3"> 
     <B>1.) Select a State: </B></FONT> 
     <SELECT NAME=state>       
      <OPTION VALUE="01">Alabama 
      <insert more options here> 
     </SELECT><BR><BR> 
 
    <FONT FACE="Comic Sans MS" SIZE="3"> 
    <B>2.) Enter a Threshold </B></FONT> 

<INPUT VALUE="0.5" SIZE="4" MAXLENGTH="4" 
NAME=thresh onBlur="checkNum()"><BR><BR> 

 
    <FONT FACE="Comic Sans MS" SIZE="3"><B> 
    3.) Submit Query: </B></FONT> 

<INPUT TYPE=submit VALUE="Submit" 
onClick="document.check.submit()"> 

     <INPUT TYPE=hidden NAME=_program  
     VALUE="prgs.matrixcounts.sas"> 
     <INPUT TYPE=hidden NAME=_service VALUE="dp"> 
     <INPUT TYPE=hidden NAME=_debug VALUE="2"> 
   </FORM> 
 
  </BODY> 
 </HTML> 
 

The added JavaScript here forces the user to enter a 
valid threshold between 0.5 and 2.0.  After the user 
enters a value in the threshold textbox, the 
checkNum() function is called either if the cursor 
moves outside the textbox, or the user clicks 
somewhere else on the page (onBlur=”checkNum()”).  
There is a unique case which this checkNum() 
function is not able to handle, namely, the case 
where a number is entered into the threshold 
textbox and the user then presses the ENTER key to 
submit the form.  The onBlur event handler does 
not recognize any changes to the page, so the 
checkNum() function is never invoked.  The form is 
then submitted even though the threshold entry may 
be invalid or vacant.  Thus, the two other JavaScript 
pieces onClick=”document.check.submit()” and onSubmit= 
”return false” can be added to prevent the user from 
submitting the form with the ENTER key.  The 
form can now be submitted with the mouse only 
after it has been properly completed.  In brief, with 



 5

the minor addition of these simple JavaScript 
elements, any prospect of passing an invalid or 
unusable parameter to the SAS program is avoided. 
 

↓ 
 

 
 
 

 SAS – ODS 
 

HTML and JavaScript are used for designing the 
front-end workings of these Internet applications; 
however, the most significant ingredient for 
creating these resourceful and practical web-based 
applications is the back-end program used for 
processing the data. SAS programs can use a 
parameter passed from an HTML form as a macro 
variable.  For the current example, the user-selected 
state and keyed-in threshold value will be used as 
macro variables, as follows:   
 
 %global file ;  
 %let file=lib.state&state ; 
 libname lib '/2001/adp5/edit_web/mtxdata/' ; 
 

 data gpratbad getnoput ; 
  set &file ; 
  if getvalue = . then getvalue = 0 ; 
  if putvalue = . then putvalue = 0 ; 
  if putvalue > 0 then do ; 
   gpratio = getvalue / putvalue ; 
   format gpratio 4.2 ; 

if gpratio > &thresh and abs(getvalue - putvalue) > 5 then  
output gpratbad ; 

  end ; 
else if getvalue > 5  then output getnoput ; 

 run ; 
 

 <additional code inserted here> 
 

The parameters state and thresh are treated as 
macro variables in the fragment of code above.  The 
data sets holding the pertinent calculations are 
stored as state<##>, where ## refers to the 
designated SAS state code.  Therefore, the results 
of this execution will reflect only the state selected 
by the user.  The threshold variable will help to 
narrow the margin of records generated by each 
execution of this SAS program. 
 

By applying the functionality of the Output 
Delivery System, reports and tables generated by 
the SAS code can be displayed colorfully in the 
client’s web browser.  It is always important that 
the output is recognizable to the clients using these 
applications; thus, by knowing the users’ needs 
ahead of time and understanding how they would 
like the tables to appear, the SAS code can be 
written accordingly. 

 <additional code inserted here> 
 
 ods html body = _webout style=statdoc ; 
 
 data _null_ ; 
  file _webout ; 
  abbrev = fipnamel(&state) ; 
  put '<br><center><b><i><font color="#003399">'abbrev' 
  -- 2001</font></i></b></center><br><hr size=3>' ; 
 run ; 
 
 proc print data=gpratbdx noobs label ; 
  title "<center>Get/Put Ratios > &thresh</center>" ; 
  label getvalue ='gets' 
  putvalue = 'puts' 
  gpratio = 'ratio' ; 
 run ; 
 

%let fn=<center><form><input type="button" value="Back" 
onClick="parent.location='javascript:history.back()'"> 
</form></center> ; 

 
 proc print data=getnoptx noobs label ; 
  title "<center>Gets and No Puts</center>" ;  
  label getvalue ='gets' 
  putvalue = 'puts' 
  gpratio = 'ratio';   
  footnote &fn ; 
 run ; 
 
 ods html close ; 
 

The above code produces the HTML reports that 
are to be displayed in the user’s web browser.  It is 
important to note that the output destination 
_webout is used to target the results of this 
execution directly to the web browser making the 
original request. Contrary to this dynamic 
approach, an actual path location can be written in 
place of _webout. Then, after executing the 
program, the resulting HTML documents can be 
stored in the appropriate location on the web server.  
In this fashion, the programmer can hard-code 
hyperlinks pointing to these documents, so that any 
user can view their content directly by clicking on 
the particular link. 
 

It is also apparent that HTML and JavaScript can be 
embedded directly into the SAS code giving the 
user more control over the ODS output. In the 
above example, a title and footer will be added to 
the resulting HTML document. The title will 
include the user’s state selection and the footer will 
contain a button that links to the previous webpage. 
 

The option STYLE= applies predefined SAS styles, 
such as Brick, Beige, or D3D, to the output HTML 
documents.  These can be applied to enhance the 
appearance of a webpage; however, the use of a 
style will not affect the actual content of that page.  
The SAS procedure PROC TEMPLATE can be used 
to craft new styles, which may be more applicable 
to the programmer’s taste, or the project’s 
requirements. Another practical ODS HTML option 
is STYLESHEET=, which the programmer can use 
to create new or apply existing Cascading Style 
Sheets.  Cascading Style Sheets, or CSS, define a 
unique layout for a web document by describing 



 6

how HTML elements should be displayed.  
Furthermore, CSS allow developers to control the 
style and layout of multiple webpages all at one 
time; so, making a global change to a number of 
documents can be achieved through a single 
modification.  Other ODS HTML options give way 
to the construction of navigational menus and 
frames, namely, the BODY=, CONTENTS=, 
PATH=, PAGE=, and FRAME= options. 
 

↓ 
 

 
 
 

ADDITIONAL TOOLS 
 

• htmSQL 
 

htmSQL is a CGI program that allows users to 
carry out SQL procedures though the Internet.  
Essentially, programmers can insert SQL 
statements right into their HTML documents.  
Users can subsequently make updates and submit 
queries to certain SAS datasets directly from these 
webpages. Plus, given that SQL is handled 
dynamically in response to a user request, only the 
most current data is processed.  
 

• SAS/GRAPH 
 

SAS/GRAPH is another valuable software package 
available through SAS.  This collection of tools can 
be utilized to build an assortment of graphs, charts, 
and plots in a variety of styles and colors.  When 
used in conjunction with SAS/IntrNet, 
SAS/GRAPH software can extend the liveliness of 
these Internet applications by fashioning elaborate, 
vibrant graphics and displaying them directly 
within the client’s web browser.  
 

• JavaServer Pages & Servlets 
 

JavaServer Pages is a newer technology that 
enables developers the ability to create insightful, 
dynamic webpages for managing business systems.  
JavaServer Pages are really an extension of Servlet 
technology. Servlets are platform-independent, 
server-side programs used for generating and 
returning HTML code to a client’s web browser.  

Together, JavaServer Pages and Servlets provide a 
favorable alternative to other types of dynamic web 
programming. There are many benefits to 
exploiting these two technologies, some of which 
include: scalability, maintainability, platform 
independence, enhanced performance, and ease of 
use. Using webAF software, a professional 
development environment for Java applications, 
one can create client- or server-side applications 
that fully integrate the existing services that SAS 
has to offer. 
 

CONCLUSION 
 

By applying an appropriate measure of SAS and 
other programming components, it is possible to 
design a controlled system for managing data that is 
accessible via the Internet. To begin with, 
developers can craft webpages using HTML (and 
possibly JavaScript) that contain forms to 
encapsulate user input.  After a user completes and 
submits a given form, the request is then routed to a 
web server, which in turn launches a SAS session.  
Ultimately, the request is processed and the results 
are directed back to the client’s web browser as a 
colorful and comprehensive webpage.  SAS/IntrNet 
essentially provides a channel for clients, perhaps 
those who lack programming skills, to interact with 
SAS data through their web browsers.  There are 
other tools available which can be used to form 
more complex webpages that may include colorful 
graphs or navigational menus. It should be apparent 
that with the tools now available through SAS, 
coupled with the modern technologies of the 
Internet, providing clear and readable data to clients 
can, convincingly, be achieved. 
 

RESOURCES 
 

SAS Institute, Inc. – Instructor-Based Training: 
♦ SAS Web Tools: Static and Dynamic Solutions Using 
  Sas/IntrNet Software 
♦ SAS Web Tools: Advanced Dynamic Solutions Using  
  SAS/IntrNet Software 
♦ SAS Web Tools: Developing JavaServer Pages and 
  Servlets Using webAF Software 

 

SAS Institute, Inc. – Base SAS Community: 
♦ http://www.sas.com/rnd/base/ 

 

SAS and all other SAS Institute, Inc. product or service 
names are registered trademarks or trademarks of SAS 
Institute, Inc. in the USA and other countries.  Other brand 
or product names are registered trademarks or trademarks of 
their respective companies. 
 

CONTACT INFORMATION 
 

Jonah P. Turner 
United States Census Bureau  
4700 Silver Hill Road, Mail Stop 8400 
Washington, DC  20233-8400 
(301) 763-5420 or jonah.p.turner@census.gov 




